

Ground Technologies Pty Ltd ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

Geotechnical Testing Services

GTE795 – Contamination Report 7 April 2016

Ostar Developments C/- Design Cubicle 44 Sorrell Street North Parramatta NSW 2151

Attention: Farah Georges E-mail: <u>farah@designcubicle.com.au</u>

Dear Sir,

RE: STAGE 1 CONTAMINATION ASSESSMENT at Nos.116-124 Restwell Street, Bankstown

This letter presents a Stage 1 Contamination report on the inspection and testing services associated with the contamination assessment undertaken at the above project.

Should you have any questions related to this report please do not hesitate to contact the undersigned.

For and on behalf of Ground Technologies Pty Ltd

annt

A. Bennett Senior Geotechnical Engineer

Reviewed By

J. Harendran Geotechnical Engineer

TABLE OF CONTENTS

Description

Table of Contents	2 3
Executive Summary 1.0 Introduction	3 4
2.0 Scope of Work	4
3.0 Site Description	5
4.0 Site History	6
4.1 Aerial Photographs	6
4.2 Search of Contaminated Land Management Records (NSW EPA)	8
4.3 Search of the Protection of the Environment Operations (POEO)	8
5.0 Site Condition and Surrounding Environment	8
6.0 Site Geology, Topography and Hydrogeology	9
7.0 Summary of Potential Sources of Contamination	10
8.0 Sampling Methodology and Laboratory Quality Assessment	10
8.1 Sampling Methodology	10
8.2 Laboratory Accreditation	10
9.0 Basis for Assessment Criteria	11
10.0 Results	12
11.0 Waste Classification	13
11.1 Waste Classification of Fill Materials	13
11.2 Waste Disposal of Natural Materials Comment	14
12.0 Conclusions and Recommendations	14

References

TABLES

TABLE 1 - SUMMARY OF SITE DETAILS	3
TABLE 2 – SUMMARY OF FIELD OBSERVATIONS	8
TABLE 3: SITE ASSESSMENT CRITERIA	11
TABLE 4 - LABORATORY TEST RESULTS OF THE FILL MATERIAL	12
TABLE 5 – WASTE CLASSIFICATION OF THE FILL MATERIAL	13
TABLE 6 - ANALYSIS OF TCLP EXTRACT	13

Appendices

Appendix A – Search results of EPA Contaminated Land Register

- Appendix B Search of POEO register of licensed and delicensed premises
- Appendix C Laboratory Test Certificates

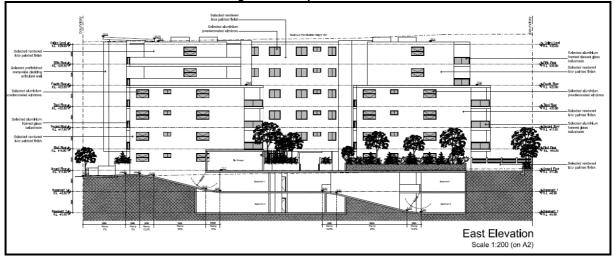
EXECUTIVE SUMMARY

This executive summary presents a synopsis of the Stage 1 Contamination Assessment for the site; Nos.116-124 Restwell Street, Bankstown. It is understood that the proposed works will comprise the demolition of five existing houses allowing the construction of a six storey apartment building with a two basement levels of car parking. The basement level car park will extend across the entire building envelope to depths of approximately 6.0m below existing ground surface levels.

The objective of the Stage 1 Contamination Report was to ascertain whether the site presents a risk to human health and/or the environment arising from any past/present activities at the site or neighbouring properties.

The conclusions of this Contamination Report are as follows:

- The site was historically used for a residential purposes.
- A review of aerial photography suggests that the neighbouring properties are residential and not considered to have posed a risk for potential contamination to the site.
- A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was documented.
- No industrial facilities undertaking heavy manufacturing are located within 500m of the subject site. The surrounding sites are residential. Therefore the risk of contamination migration caused by surface run-off from adjoining sites is minimal.


Minor filling was observed during the field investigation. As such a sampling and analysis program was undertaken order to assess the nature, location and likely distribution of any contamination present at the subject site, and also any potential risk posed to human health or the environment. Test results were compared to the relevant assessment criteria, Hils B, and were well below the assessment criteria and as such, indicate a low risk of contamination due to filling within the site.

The site is suitable for development for "residential" use. No remediation action plan is required.

During Excavation works, the fill may be disposed of as "General Solid Waste". The natural soils and sandstone bedrock may be disposed of as VENM.

1.0 INTRODUCTION

Ground Technologies Pty Ltd have undertaken a Stage 1 Contamination Report as requested by Ostar Developments on No.116-124 Restwell Street, Bankstown. It is understood that the proposed works will comprise the demolition of five existing houses allowing the construction of a six storey apartment building with two levels of basement level car parking. The basement level car park will extend across the entire building envelope to a depth of approximately 6.0m below existing ground surface levels.

2.0 SCOPE OF WORK

The following scope of work was conducted:

- Desktop Study of the following to assist in identification of potential contamination issues:
 - Data from Environment Protection Authority
 - o Scheduled premises
 - o Section 35 notices
 - Unhealthy building land sites
 - o Sites which are likely contaminated and not contaminated
 - Data from the Protection of the Environment Operations Public Register (POEO)
- Review of soils and geological maps.
- Review of aerial photography
- Site Inspection by a Geotechnical Engineer to ascertain current activities, and any visible signs of contamination.
- Collection of soil samples by a Geotechnical Engineer according to a sampling plan.
- Chemical analysis by a NATA accredited laboratory.
- Assessment of the results of the chemical analysis against the appropriate guidelines.
- Preparation of the Stage1 Contamination Report.

3.0 SITE DESCRIPTION

Site Address	116-124 Restwell Street, Bankstown
Council Area	Bankstown City Council
Lot & Plan No.	Lot 100 DP1135453 Lot s 2-5 DP13055

Table 1 - Summary of Site Details

Figure 2 – Site Location

The subject site is a combination of five residential lots measuring approximately 65m wide along the Restwell Street Frontage and up to 50m in length. The site covers an area of approximately 3250m² and is relatively flat.. No's 116, 120 & 122 Restwell Street contain single storey brick houses. No 118 Restwell Street contains a single storey weatherboard house and No. 124 Restwell Street contains a double storey brick house. Based upon architecture and material inputs it is estimated that the houses in No.116-122 were constructed prior to 1980 whilst the house on No.124 was build post 1980.

Photograph 1 – No.116-120 Restwell Street

Photograph 2 - No.116-120 Restwell Street

4.0 SITE HISTORY

In order to ascertain the site history, a documentary review of past and present land use at the subject site and the surrounding area has been undertaken as follows:

4.1 Aerial Photographs:

A review of Historical Aerial Photographs was undertaken in order to provide a greater insight into the site history.

1961 – In 1961 the site is appears to be in use for residential purposes. The surrounding properties appear to be residential. The subject site is highlighted in figure 3.

Figure 3 – Aerial Photograph from 1961

<u>1986</u> – In 1986 the site is appears to be in use for residential purposes. The surrounding properties appear to be residential. No significant changes to the surrounding region could be observed, however the house at No.124 has been constructed. The subject site is highlighted in figure 4.

Figure 4 – Aerial Photograph from 1986

2005 – No significant changes to the surrounding region since 1986 could be observed and the site is appears to be in use for residential purposes. The surrounding properties appear to be residential. The subject site is highlighted in figure 5.

Figure 5 – Aerial Photograph from 2005

2016 – No significant changes to the surrounding region since 1986 could be observed and the site is appears to be in use for residential purposes. The surrounding properties appear to be residential. The subject site is highlighted in figure 6.

4.2 Search of Contaminated Land Management Register (NSW EPA):

A summary of the search of the NSW EPA Contaminated Land Management record of notices for the Bankstown City Council Area can be found in Appendix A. No notices have been issued to the subject site. Eight (8) sites are listed on this register however they are situated at such a distance (greater than 200m) so as not to pose a potential contamination risk to the subject property.

4.3 Search of Protection of the Environment Operations Public Register (POEO) of Licensed and Delicensed Premises:

A search of the POEO public register of licensed and delicensed premises (DECC) provided the details of thirty four (34) premises in the Bankstown City Council area (see Appendix B), however no licensed or delicensed premises were located within the immediate surrounding area of the site (within 200m).

5.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

A site investigation was conducted on the 8th of March 2016. The field observations are summarised in the table below:

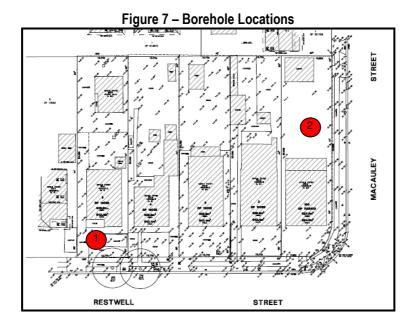

Parameter	Observation
Visible observations on soil	No visible evidence of contamination was observed. No staining of the soils or
contamination	odours were documented.
Signs of plant stress	None observed.
Signs of Agriculture	None observed. No visible indicators of tilled land
Presence of drums, fill or waste materials	None observed. No visible indicators of underground fuel tanks (bowsers or venting pipes)
Presence of fill	Minor filling was observed within the No124 Restwell Street

Table 2 – Summary of Field Observations

6.0 SITE GEOLOGY AND HYDROGEOLOGY

The 1:100,000 scale Geological Series Map of the Sydney region indicates that the subject site is underlain by an Alluvial (Qha) profile consisting of *Silty and Peaty Quartz, Sand, Silt and Clay.* This is further underlain by Ashfield Shale of the Wianamatta Group dating back to the Middle Triassic period and generally comprise *Claystone / Siltstone and fine Sandstone / Siltstone laminite.*

Fieldwork was undertaken on the 8th of March 2016 and included the drilling of two (2) boreholes using a 4WD Toyota Landcruiser Ute mounted drill rig with 100 mm solid flight spiral augers at locations shown on Figure 7.

The boreholes indicate that the soil profile generally comprises the following:-

Borehole 1

- 0 0.5m: TOPSOIL; Sandy silt, pale brown, dry
- 0.5 1.6m: NATURAL; Silty Clay, medium plasticity, mottled yellow/brown and pale brown, slightly moist, very stiff.
- 1.6 2.3m: NATURAL; Silty Clay, medium plasticity, mottled yellow/brown, pale brown and pale grey, slightly moist, very stiff.
- 2.3 2.6m: NATURAL; Silty Clay with significant ironstone gravels, medium plasticity, mottled yellow/brown, pale brown and pale grey, very moist to wet, stiff.
- 2.6 3.8m: BEDROCK; Shale, completely weathered, extremely low strength, pale grey with yellow mottling.
- 3.8 5.0m: BEDROCK; Shale, extremely weathered, very low strength, brown, grey/brown.
- 5.0 6.2m: BEDROCK; Shale, extremely weathered, very low strength, brown, grey/brown.

Borehole 2

- 0 1.0m: FILL; Admixed Silt, Sand, minor crushed brick, brown, dark brown, slightly moist. Sample B1 was
 recovered from this profile
- 0.5 1.6m: NATURAL; Very Silty Clay, medium plasticity, grey/brown with orange mottling, very moist, soft.
- 1.4 2.8m: NATURAL; Silty Clay, medium plasticity, mottled yellow/brown, pale brown and pale grey, slightly moist, very stiff.
- 2.8 3.2m: NATURAL; Silty Clay with significant ironstone gravels, medium plasticity, mottled yellow/brown, pale brown and pale grey, wet, stiff.
- 3.2 4.1m: BEDROCK; Shale, completely weathered, extremely low strength, pale grey with yellow mottling.
- 4.1 5.4m: BEDROCK; Shale, extremely weathered, very low strength, brown, grey/brown.
- 5.4 6.5: BEDROCK; Shale, extremely weathered, very low strength, brown, grey/brown.

No groundwater was encountered at the time of our visit.

During wet months or following significant rainfall events, development of "perched" groundwater may occur, resulting in localized wetting or saturation of the silty clay with significant ironstone gravels which overlie the clay interface. This perched water was observed during the field investigation with free water in the borehole at the completion of drilling.

7.0 SUMMARY OF POTENTIAL SOURCES OF CONTAMINATION

A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was documented. No history of heavy chemicals or metals storage was documented. No industrial facilities undertaking heavy manufacturing are located within 500m of the subject site. The surrounding sites are residential / warehousing. Therefore, the risk of contamination migration caused by surface run-off from adjoining sites is minimal. The neighbouring properties are rural residential and not considered to have posed a risk for potential contamination to the site.

Minor filling was observed within No.124 Restwell Street. Potential contamination is possible within the fill material in the form of Heavy Metals, Total Petroleum Hydrocarbons (TPH), BTEX and Polynuclear Aromatic Hydrocarbons (PAH).

8.0 SAMPLING METHODOLOGY AND LABORATORY QUALITY ASSESSMENT

8.1 Sampling Methodology

One (1) sample was recovered in order to assess the nature, location and likely distribution of any contamination present at the subject site, and also any potential risk posed to human health or the environment. The sample was collected from the auger using a stainless steel trowel, which had been decontaminated prior to use to prevent cross contamination occurring.

The sample was placed in a 250g laboratory prepared glass jars which was capped using Teflon-sealed screw caps and then placed in a chilled container. The sample jar were transported to our West Hoxton office and placed in a refrigerator.

Two days later the sample was forwarded to Australian Laboratory Services (ALS) Pty Ltd for analysis along with a Chain of Custody which was subsequently returned to confirm the receipt of all samples.

8.2 Laboratory Accreditation

ALS are accredited by the National Association of Testing Authorities (NATA) for the analyses carried out and are also accredited for compliance with ISO/IEC 17025.

9.0 BASIS FOR ASSESMENT CRITERIA

The Assessment criteria used in this investigation have been obtained from the National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 1999 amended 2013). This document presents risk-based Health Investigation Levels based on a variety of exposure settings for a number of organic and inorganic contaminants. To assess the risk to human health the results of the laboratory analysis are compared against the Health Investigation Levels (HIL) for the exposure setting; "Residential B" – Residential with minimum opportunities for soil access such as high rise buildings and apartments. The selected assessment criteria used in this assessment are summarized on table 3 below:

Chemica	als and other attributes	Health Based Investigation Level (HIL'B')
	Arsenic	500
	Cadmium	150
	Chromium (total)	500
Hoovy Motolo	Copper	30,000
Heavy Metals	Lead	1,200
	Nickel	120
	Zinc	1,200
	Mercury	60,000
	C6-C10	180
	C10-C16	120
	C16-C34	300
	C34-C40	2,800
	Benzene	50
Hydrocarbons	Toulene	85
	Ethylbenzene	70
	Xylenes	105
	Total PAH	400
	Benzo(a)pyrene	0.7
	Carcinogenic PAH	4

Table 3: Site Assessment Criteria

10.0 **RESULTS**

Test results are tabulated and presented in table 4 along with the relevant assessment criteria. Areas in bold highlighting have exceeded the site threshold values. Laboratory test certificates (ES1605356) are located in Appendix C.

1																						
	Lo	ocation					Ме	tals								Hydr	ocarbo	ns				
	Sample No.	Borehole	Depth	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	C6-C10	C10-C16	C16-C34	C34-C40	Benzene	Toulene	Ethylbenzene	Xyleses	Total PAH	Carcinogenic PAH	Benzo(a)pyrene
	B1	BH1	0.4m	58	<1	15	39	620	0.1	8	433	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	6.8	1.3	0.6
	NEPM Health In	vestigatior	n Level (B)	500	150	500	30,000	1,200	120	1,200	60,000	180	120	300	280	50	85	70	105	400	4	0.7

Table 4 - Laboratory Test Results of the Fill Material

Heavy metal and hydrocarbon concentrations within the fill soils are presented in Table 4. The concentrations of all metals and hydrocarbons were well below the relevant assessment criteria (HILs B). Therefore, the heavy metal and hydrocarbon concentrations present in the fill profile are not considered likely to pose a risk to human health or the environment under the setting - Residential with minimum opportunities for soil access such as high rise buildings and apartments.

11.0 WASTE CLASSIFICATION

11.1 Waste Classification of Fill Materials

The Assessment criteria used in this investigation have been obtained from the Specific Contaminant Concentrations from Table 1 of Part 1: Classifying Waste, Waste Classification Guidelines published by the NSW EPA (2014).

Contaminant	SCC mg/kg B1	General Solid Waste Criteria CT1 mg/kg	Restricted Solid Waste Criteria CT2 mg/kg	Classification (without TCLP)
Arsenic	58	100	400	General
Cadmium	<1	20	80	General
Chromium	15	100	400	General
Lead	620	100	400	Hazardous
Mercury	0.1	4	16	General
Nickel	8	40	160	General
Benzene	<0.2	10	40	General
Toluene	<0.5	288	1152	General
Ethyl Benzene	<0.5	600	2400	General
Xylenes (total)	<0.5	1000	4000	General
Benzo(a)pyrene	0.6	0.8	3.2	General
Total PAH	6.8	200*	800*	General
TPH (C6-C9)	<10	650*	2600*	General
TPH (C10-C36)	<50	10000*	40000*	General

Table 5 – Waste Classification of the Fill Material

results of the analyses on the soil show that the material could not be classified as Restricted Solid Waste without testing Lead with the Toxicity Characteristics Leaching Procedure (TCLP). As such, additional testing was undertaken by ALS (Certificate Reference number ES1606876) The results are summarised in Table 6 with the relevant Contaminant Concentrations from Table 2 of Part 1: Classifying Waste, Waste Classification Guidelines published by the NSW EPA (2014).

Table 6 - Analysis of TCLP Extract

Sample	Contaminant	SCC mg/kg	General Solid Waste Criteria (mg/kg)	TCLP (mg/L)	General Solid Waste Criteria mg/L	Classification (with TCLP)
B1	Lead	620	1500	<0.1	20	General

After analysing the soil samples recovered from the subject site, the fill material is classified as <u>General Solid Waste</u> (non putrescible) for landfill disposal purposes since the results are in accordance with the values in Table 1 and 2 of the Part 1: Classifying Waste, Waste Classification Guidelines published by the NSW EPA (2014).

11.2 Waste Disposal of Natural Materials Comment

Based upon visual observations and laboratory test results, the material on the above site is classified as virgin excavated natural material (VENM) for future use; since it is in accordance with the definition of VENM given under the *Protection of the Environments Operations Act 1997* as outlined below:

'Natural material (such as clay, gravel, sand, soil or rock fines):

- That has been excavated or quarried from areas that are not contaminated with manufactured chemicals or
 process residues, as a result of industrial, commercial, mining or agricultural activities, and
- That does not contain any sulfidic ores or soils or any other waste.'

Heavy metal and hydrocarbon concentrations within the fill soils are presented in Table 4. The concentrations of all metals and hydrocarbons were well below the relevant assessment criteria (HILs B). Therefore, the heavy metal and hydrocarbon concentrations present in the fill profile are not considered likely to pose a risk to human health or the environment under a 'standard residential with garden/accessible soil' setting.

12.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this Contamination Report are as follows:

- The site was historically used for a residential purposes.
- A review of aerial photography suggests that the neighbouring properties are residential and not considered to have posed a risk for potential contamination to the site.
- A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was documented.
- No industrial facilities undertaking heavy manufacturing are located within 500m of the subject site. The surrounding sites are residential. Therefore the risk of contamination migration caused by surface run-off from adjoining sites is minimal.

Filling was observed during the field investigation. As such a sampling and analysis program was undertaken order to assess the nature, location and likely distribution of any contamination present at the subject site, and also any potential risk posed to human health or the environment. Test results were compared to the relevant assessment criteria, Hils B, and were well below the assessment criteria and as such, indicate a low risk of contamination due to filling within the site.

The site is suitable for development for "residential" use. No remediation action plan is required.

During Excavation works, the fill may be disposed of as "General Solid Waste". The natural soils and shale bedrock may be disposed of as VENM.

REFERENCES:

Geological Series Sheet 9130 (EDITION 1) 1983, Map of the Sydney region, scale 1:100,000

- Contaminated Sites Guidelines for Consultants Reporting on Contaminated Sites. NSW Environment Protection Authority (EPA) 2000.
- Managing Land Contamination: Planning Guidelines SEPP55 Remediation of Land Department of Urban Affairs and Planning and Environment Protection Authority (DUAP and EPA) 1998.
- National Environment Protection (Assessment of Site Contamination) Measure National Environmental Protection Council 1999.

APPENDIX A

SEARCH RESULTS OF EPA CONTAMINATED LAND REGISTER

Home

Protecting your environment For business and industry

About the NSW EPA

Media and information Contact us

Healthy Environment, Healthy Community, Healthy Business

Search results

Your search for:	LGA: Bankstown City Council	Matched 26	notices relating to 8 sites.
		Search A	Again Refine Search
Suburb	Address	Site Name	Notices related to
			this site
CHESTER HILL	127 Orchard ROAD	Former Orica, Chester Hill	1 current and 1
			former
PADSTOW	55 Bryant STREET	Exide	1 current
REVESBY	33-35 Violet STREET	Bituminous Products	2 current and 1
			former
REVESBY	21 Marigold STREET	Mirotone Pty Ltd	2 current
VILLAWOOD	66 Christina ROAD	Former Electrical Component Manufacturer	1 current and 4
			former
VILLAWOOD	2 Christina ROAD	Former Orica Crop Care	3 current
VILLAWOOD	49 Miowera ROAD	Former Siemens/Westinghouse	9 former
YAGOONA	117-153 Rookwood ROAD	Galvanising Services	1 current

Page 1 of 1

30 March 2016

APPENDIX B

SEARCH OF POEO REGISTER OF LICENSED AND DELICENSED PREMISES

Organisation Name	Premise Address	Suburb	Local Govt Area	Fee-Based Activity
POOL RESOURCES PTY LIMITED	390 MARION STREET	BANKSTOWN	BANKSTOWN	Chemical storage waste generation
POOL RESOURCES PTY LIMITED	390 MARION STREET	BANKSTOWN	BANKSTOWN	General chemicals storage
ACKIES ASIA PACIFIC PTY LIMITED	112-116 CANTERBURY ROAD	BANKSTOWN	BANKSTOWN	Metal waste generation
BANKSTOWN CITY COUNCIL	-	BANKSTOWN	BANKSTOWN	Other activities
ntegrated Packaging Australia Pty Ltd	149 ORCHARD ROAD	CHESTER HILL	BANKSTOWN	Printing, packaging and visual communications waste generation
FAIRFAX PRINTERS PTY LIMITED	1 WORTH STREET	CHULLORA	BANKSTOWN	Printing, packaging and visual communications waste generation
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Composting
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Non-thermal treatment of general waste
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Recovery of general waste
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and as
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Waste storage - other types of waste
SITA AUSTRALIA PTY LTD	MUIR ROAD	CHULLORA	BANKSTOWN	Waste storage - waste tyres
P & M QUALITY SMALLGOODS PTY LTD	18 HUME HIGHWAY	CHULLORA	BANKSTOWN	General animal products production
SYDNEY TRAINS	WORTH STREET GATE1	CHULLORA	BANKSTOWN	Recovery of general waste
SYDNEY TRAINS	WORTH STREET GATE1	CHULLORA	BANKSTOWN	Waste storage - other types of waste
VEOLIA ENVIRONMENTAL SERVICES	75 ANZAC STREET	GREENACRE	BANKSTOWN	Non-thermal treatment of general waste
VEOLIA ENVIRONMENTAL SERVICES	75 ANZAC STREET	GREENACRE	BANKSTOWN	Waste storage - other types of waste
GOYEN CONTROLS CO PTY LTD	268 MILPERRA ROAD	MILPERRA	BANKSTOWN	Metal coating
GOYEN CONTROLS CO PTY LTD	268 MILPERRA ROAD	MILPERRA	BANKSTOWN	Metal processing
SIMS GROUP AUSTRALIA	43 ASHFORD AVE	MILPERRA	BANKSTOWN	Scrap metal processing
BANKSTOWN CITY COUNCIL	BRANSGROVE ROAD	MILPERRA	BANKSTOWN	Waste disposal by application to land
BANKSTOWN CITY COUNCIL	Bransgrove Road	MILPERRA	BANKSTOWN	Recovery of general waste
BANKSTOWN CITY COUNCIL	Bransgrove Road	MILPERRA	BANKSTOWN	Waste storage - other types of waste
ARDAGH AUSTRALIA PTY LTD	11 Amour Street	MILPERRA	BANKSTOWN	Metal coating
ARDAGH AUSTRALIA PTY LTD	11 Amour Street	MILPERRA	BANKSTOWN	Metal processing
ARDAGH AUSTRALIA PTY LTD	11 Amour Street	MILPERRA	BANKSTOWN	Metal waste generation
DULUXGROUP (AUSTRALIA) PTY LTD	15 GOW STREET	PADSTOW	BANKSTOWN	Chemical storage waste generation
DULUXGROUP (AUSTRALIA) PTY LTD	15 GOW STREET	PADSTOW	BANKSTOWN	General chemicals storage
THE LINCOLN ELECTRIC CO PTY LTD	35 BRYANT ST	PADSTOW	BANKSTOWN	Chemical production waste generation
THE LINCOLN ELECTRIC CO PTY LTD	35 BRYANT ST	PADSTOW	BANKSTOWN	General chemicals storage
EXIDE AUSTRALIA PTY LTD	55 BRYANT STREET	PADSTOW	BANKSTOWN	Battery production
EXIDE AUSTRALIA PTY LTD	55 BRYANT STREET	PADSTOW	BANKSTOWN	Chemical production waste generation
EXIDE AUSTRALIA PTY LTD	55 BRYANT STREET	PADSTOW	BANKSTOWN	Contaminated soil treatment
EXIDE AUSTRALIA PTY LTD	55 BRYANT STREET	PADSTOW	BANKSTOWN	Recovery of hazardous and other waste
FOSECO PTY LIMITED	7 STUART STREET	PADSTOW	BANKSTOWN	Dangerous goods production
FOSECO PTY LIMITED	7 STUART STREET	PADSTOW	BANKSTOWN	General chemicals storage
FOSECO PTY LIMITED	7 STUART STREET	PADSTOW	BANKSTOWN	Non-thermal treatment of hazardous and other waste
FOSECO PTY LIMITED	7 STUART STREET	PADSTOW	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and as
TRANSPACIFIC CLEANAWAY PTY LTD	12 - 14 STUART STREET	PADSTOW	BANKSTOWN	Non-thermal treatment of hazardous and other waste
GALVATECH PTY LTD	49 GOW STREET	PADSTOW	BANKSTOWN	Metal coating
GALVATECH PTY LTD	49 GOW STREET	PADSTOW	BANKSTOWN	Metal waste generation
DULUXGROUP (AUSTRALIA) PTY LTD	1 GOW STREET	PADSTOW	BANKSTOWN	Chemical production waste generation
DULUXGROUP (AUSTRALIA) PTY LTD	1 GOW STREET	PADSTOW	BANKSTOWN	Paints/polishes/adhesives production
ORANGEVILLE RECYCLING PTY LTD	81 GOW STREET	PADSTOW	BANKSTOWN	Recovery of general waste

ORANGEVILLE RECYCLING PTY LTD	81 GOW STREET	PADSTOW	BANKSTOWN	Waste storage - other types of waste
ECOLAB PTY LTD	30-32 MARIGOLD STREET	REVESBY	BANKSTOWN	Chemical production waste generation
ECOLAB PTY LTD	30-32 MARIGOLD STREET	REVESBY	BANKSTOWN	Dangerous goods production
ECOLAB PTY LTD	30-32 MARIGOLD STREET	REVESBY	BANKSTOWN	General chemicals storage
ORORA PACKAGING AUSTRALIA PTY LTD	146 CARRINGTON STREET	REVESBY	BANKSTOWN	Printing, packaging and visual communications waste generation
MIROTONE PTY LTD	21 MARIGOLD STREET	REVESBY	BANKSTOWN	Chemical production waste generation
MIROTONE PTY LTD	21 MARIGOLD STREET	REVESBY	BANKSTOWN	Dangerous goods production
MIROTONE PTY LTD	21 MARIGOLD STREET	REVESBY	BANKSTOWN	Paints/polishes/adhesives production
BITUMINOUS PRODUCTS PTY LTD	33 VIOLET ST	REVESBY	BANKSTOWN	Recovery of waste oil
BITUMINOUS PRODUCTS PTY LTD	33 VIOLET ST	REVESBY	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
SITA AUSTRALIA PTY LTD	76 VIOLET ST	REVESBY	BANKSTOWN	Non-thermal treatment of hazardous and other waste
SITA AUSTRALIA PTY LTD	76 VIOLET ST	REVESBY	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
TRANSPACIFIC INDUSTRIAL SOLUTIONS	112 Milperra Road	REVESBY	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
SITA AUSTRALIA PTY LTD	78 Violet Street	REVESBY	BANKSTOWN	Non-thermal treatment of hazardous and other waste
SITA AUSTRALIA PTY LTD	78 Violet Street	REVESBY	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
PPG INDUSTRIES AUSTRALIA PTY LIMITED	9 BIRMINGHAM AVE	VILLAWOOD	BANKSTOWN	Chemical production waste generation
PPG INDUSTRIES AUSTRALIA PTY LIMITED	9 BIRMINGHAM AVE	VILLAWOOD	BANKSTOWN	General chemicals storage
PPG INDUSTRIES AUSTRALIA PTY LIMITED	9 BIRMINGHAM AVE	VILLAWOOD	BANKSTOWN	Paints/polishes/adhesives production
COLGATE-PALMOLIVE PTY LTD	50 MARPLE AVE	VILLAWOOD	BANKSTOWN	Chemical production waste generation
COLGATE-PALMOLIVE PTY LTD	50 MARPLE AVE	VILLAWOOD	BANKSTOWN	Soap and detergents production
ORICA AUSTRALIA PTY LTD	GATE 1, 2 CHRISTINA ROAD	VILLAWOOD	BANKSTOWN	Contaminated soil treatment
ORICA AUSTRALIA PTY LTD	GATE 1, 2 CHRISTINA ROAD	VILLAWOOD	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
ORICA AUSTRALIA PTY LTD	GATE 3, 2 CHRISTINA ROAD	VILLAWOOD	BANKSTOWN	Chemical production waste generation
ORICA AUSTRALIA PTY LTD	GATE 3, 2 CHRISTINA ROAD	VILLAWOOD	BANKSTOWN	Pharmaceutical and veterinary products production
TES-AMM AUSTRALIA PTY LTD	1 MARPLE AVENUE	VILLAWOOD	BANKSTOWN	Non-thermal treatment of hazardous and other waste
TES-AMM AUSTRALIA PTY LTD	1 MARPLE AVENUE	VILLAWOOD	BANKSTOWN	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbe
GALVANISING SERVICES PTY LTD	135 ROOKWOOD ROAD	YAGOONA	BANKSTOWN	Metal coating

APPENDIX C

LABORATORY TEST CERTIFICATES

ad Markey GLD 4740 ຈາງສູງສຣູປອບສະວດາາ ມີເຊັດແລະ Spring-tale VID 5171 (es meikountegassglobal com ad Mudgee NSW 2650 ເອ maigassglobal com	DNEW0.54TLE 5 Rose Gum Ruad Wardblock (NSW 2004 Pm 02, 4268 9-43.5 El samples reversatile@alegronal.cum Pm 02, 4268 9-43.5 El samples reversatile@alegronal.cum Ph 02,4425,2455 El movar@alegronal.cum DEETT 410 hust 94.49, 4alaga WA 5030 Ph 02,9204 7-955 El samples.pight@al6global.com Ph 02,9204 7-955 El samples.pight@al6global.com		DSV DNEY 277-259 Woodpark Roud Smithlield NSW 2164 PN, 02.9734 BSE6 E samples sydray-Balagiolaa oom 2100-NNSWLE H-415 Delema Court Bonk 2.10 4913 19.37235 VDOE E rowneelle andronnattaggaspaster.com DSVCLLCMGCN10.36 K-emity Street Wollangroy (NSW 25.0) Pro. 02.4225 2125 E portiembia@algobat.com
\T (List due date): d or urgent TAT (List due date):	due date);	FOR LABORATORY USE ONLY (Circle) Custody Seal Intact?	LY (Circle) Yes No NA
	COC SEQUENCE NUMBER (Circle)		Yes
	coc: 1 2 3 4 5 6 OF: 1 2 3 4 5 6	7 Random Sample Temperature on Receipt 7 Other commant:	decelpti
BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
"]3]b	DATE/TIME:	DATE/TIME:	DATE/TIME:
ANALYS	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	must be listed to attract suite price) ired) or Dissolved (field filtered bottle	Additional Information
CONTRINERS			Comments on likely contaminant levels, diutions, or samples requiring specific QC analysis etc.
6 ×			
	Environmental Division	vision	
	Work Order Reference		
1			
	Telephone : + 61-2-8784 8555		
-			
n Hydroxide Preserved rved Amber Glass; H	n Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic rved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;	ight Unpreserved Plastic iation bottle; SP = Sulfuric Prèserved Plast	c; F = Formaldehyde Preserved Glass;

an Ar airte ş

CERTIFICATE OF ANALYSIS

Work Order	: ES1605356	Page	: 1 of 4
Client		Laboratory	Environmental Division Sydney
Contact		Contact	. Environmental Division Sydney
Address	PO BOX 1121	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
	GREEN VALLEY NSW, AUSTRALIA 2168		•
E-mail	anthony@groundtech.com.au	E-mail	:
Telephone	+61 02 8783 8200	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: gte795 Bankstown	QC Level	: NEPM 2013 B3 & ALS QC Standard
Order number	:	Date Samples Received	: 10-Mar-2016 09:00
C-O-C number	:	Date Analysis Commenced	: 16-Mar-2016
Sampler	: ANTHONY BENNETT	Issue Date	: 17-Mar-2016 16:04
Site	:		
		No. of samples received	:1
Quote number	:	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been ele	ectronically signed by the authorized sig	natories indicated below. Electronic signing has been
NATA	Accredited for compliance with ISO/IEC 17025.	carried out in compliance with proc Signatories	cedures specified in 21 CFR Part 11. Position	Accreditation Category
WORLD RECOGNISED		Celine Conceicao Edwandy Fadjar	Senior Spectroscopist Organic Coordinator	Sydney Inorganics, Smithfield, NSW Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 4 Work Order : ES1605356 Client : GROUND TECHNOLOGIES Project : gte795 Bankstown

Analytical Results

Compound CAS Number LOR EG005T: Total Metals by ICP-AES 5 Arsenic 7440-38-2 5 Cadmium 7440-43-9 1 Chromium 7440-43-9 1 Chromium 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthylene 206-44-0 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 205-99-2 205-82-3 0.5 5 Benzo(k)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 5 </th <th>ing date / time Unit Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg</th> <th>[08-Mar-2016] ES1605356-001 Result 58 <1 15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</th> <th> Result <</th> <th></th> <th> Result Result</th> <th></th>	ing date / time Unit Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	[08-Mar-2016] ES1605356-001 Result 58 <1 15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Result <		Result Result	
EG005T: Total Metals by ICP-AES Arsenic 7440-38-2 5 Cadmium 7440-43-9 1 Chromium 7440-43-9 1 Chromium 7440-47-3 2 Copper 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 0.1 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 205-09-2 0.5 Benz(a)anthracene 50-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(b+j)fluoranthene 205-99	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result	Result Image: Constraint of the second se	Result	Result	Result
EG005T: Total Metals by ICP-AES Arsenic 7440-38-2 5 Cadmium 7440-43-9 1 Chromium 7440-43-9 1 Chromium 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-60-6 5 EG035T: Total Recoverable Mercury by FIMS 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 4.0 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 205-99-2 0.5 Benz(a)anthracene 50-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Inde	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	58 <1 15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Arsenic7440-38-25Cadmium7440-43.91Chromium7440-47.32Copper7440-50.85Lead7439-92.15Nickel7440-62.02Zinc7440-66.65EG035T: Total Recoverable Mercury by FIMS7Mercury7439-97.60.1EP075(SIM)B: Polynuclear Aromatic Hydrocarboms0.5Acenaphthylene208-96.80.5Acenaphthylene83-32.90.5Fluorene86-73.70.5Fluorene85-01.80.5Fluoranthene206-44.00.5Senza(a)anthracene56-55.30.5Benzo(b+j)fluoranthene205-99-2 205-82.30.5Benzo(k)fluoranthene205-99-2 205-82.30.5Benzo(a)pyrene50-32.80.5Indeno(1.2.3.cd)pyrene53-70.30.5Dibenz(a.h)anthracene53-70.30.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	58 <1 15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Arsenic7440-38-25Cadmium7440-43.91Chromium7440-47.32Copper7440-50.85Lead7439-92.15Nickel7440-62.02Zinc7440-66.65EG035T: Total Recoverable Mercury by FIMS7Mercury7439-97.60.1EP075(SIM)B: Polynuclear Aromatic Hydrocarboms0.5Acenaphthylene208-96.80.5Acenaphthylene83-32.90.5Fluorene86-73.70.5Fluorene85-01.80.5Fluoranthene206-44.00.5Senza(a)anthracene56-55.30.5Benzo(b+j)fluoranthene205-99-2 205-82.30.5Benzo(k)fluoranthene205-99-2 205-82.30.5Benzo(a)pyrene50-32.80.5Indeno(1.2.3.cd)pyrene53-70.30.5Dibenz(a.h)anthracene53-70.30.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Cadmium 7440-43-9 1 Chromium 7440-47-3 2 Copper 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-60-0 2 Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 0.1 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(k)fluoranthene 207-08-9 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	15 39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Chromium 7440-47-3 2 Copper 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-62-0 2 Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 7439-97-6 0.1 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 205-99-2 205-82-3 0.5 Benzo(a)pyrene 50-32-8 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	39 620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Copper 7440-50-8 5 Lead 7439-92-1 5 Nickel 7440-02-0 2 Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 60.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthylene 83-32-9 0.5 Fluorene 86-73-7 0.5 Fluorene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 50-53-3 0.5 Dibenz(a.h)anthracene 53-70-3 0.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	620 8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Lead 7439-92-1 5 Nickel 7440-02-0 2 Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 6 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthylene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 <	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
Nickel 7440-02-0 2 Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 0.1 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	433 0.1 <0.5 <0.5 <0.5 <0.5 <0.5			 	
Zinc 7440-66-6 5 EG035T: Total Recoverable Mercury by FIMS 0.1 Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 <0.5 <0.5 <0.5 <0.5 <0.5				
EG0335T: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5	 	 		
Mercury 7439-97-6 0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons 0.5 Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5	 	 		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benza(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5		 		
Naphthalene 91-20-3 0.5 Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5				
Acenaphthylene 208-96-8 0.5 Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5				
Acenaphthene 83-32-9 0.5 Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg mg/kg	<0.5 <0.5				
Fluorene 86-73-7 0.5 Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	<0.5				
Phenanthrene 85-01-8 0.5 Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5						
Anthracene 120-12-7 0.5 Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5						
Fluoranthene 206-44-0 0.5 Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	<0.5				
Pyrene 129-00-0 0.5 Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	1.6				
Benz(a)anthracene 56-55-3 0.5 Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	1.6				
Chrysene 218-01-9 0.5 Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	0.5				
Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	0.6				
Benzo(k)fluoranthene 207-08-9 0.5 Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	0.6				
Benzo(a)pyrene 50-32-8 0.5 Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene 193-39-5 0.5 Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	0.6				
Dibenz(a.h)anthracene 53-70-3 0.5	mg/kg	<0.5				
	mg/kg	<0.5				
Benzo(g.h.i)perylene 191-24-2 0.5	mg/kg	0.5				
Sum of polycyclic aromatic hydrocarbons 0.5	mg/kg	6.8				
^ Benzo(a)pyrene TEQ (zero) 0.5	mg/kg	0.7				
^ Benzo(a)pyrene TEQ (half LOR) 0.5	mg/kg	1.0				
^ Benzo(a)pyrene TEQ (LOR) 0.5	mg/kg	1.3				
EP080/071: Total Petroleum Hydrocarbons						
C6 - C9 Fraction 10		<10				
C10 - C14 Fraction 50	mg/kg					
C15 - C28 Fraction 100	mg/kg mg/kg	<50				

Page : 4 of 4 Work Order : ES1605356 Client : GROUND TECHNOLOGIES Project : gte795 Bankstown

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	B1				
	Cli	ient sampli	ng date / time	[08-Mar-2016]				
Compound	CAS Number	LOR	Unit	ES1605356-001				
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocar	bons - Continued							
C29 - C36 Fraction		100	mg/kg	<100				
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10				
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10				
>C10 - C16 Fraction		50	mg/kg	<50				
>C16 - C34 Fraction		100	mg/kg	<100				
>C34 - C40 Fraction		100	mg/kg	<100				
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50				
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50				
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2				
Toluene	108-88-3	0.5	mg/kg	<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
^ Sum of BTEX		0.2	mg/kg	<0.2				
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5				
Naphthalene	91-20-3	1	mg/kg	<1				
EP075(SIM)S: Phenolic Compound Su	irrogates							
Phenol-d6	13127-88-3	0.5	%	85.2				
2-Chlorophenol-D4	93951-73-6	0.5	%	89.4				
2.4.6-Tribromophenol	118-79-6	0.5	%	74.1				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103				
Anthracene-d10	1719-06-8	0.5	%	94.3				
4-Terphenyl-d14	1718-51-0	0.5	%	92.5				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	92.3				
Toluene-D8	2037-26-5	0.2	%	90.0				
4-Bromofluorobenzene	460-00-4	0.2	%	88.0				

CERTIFICATE OF ANALYSIS

Work Order	ES1606876	Page	: 1 of 4	
Client		Laboratory	Environmental Division Sydney	
Contact	: MR ANTHONY BENNETT	Contact	:	
Address	: PO BOX 1121	Address	: 277-289 Woodpark Road Smithfield NSW Australia	a 2164
	GREEN VALLEY NSW, AUSTRALIA 2168			
Telephone	: +61 02 8783 8200	Telephone	: +61-2-8784 8555	
Project	: gte795 Bankstown	Date Samples Received	: 30-Mar-2016 14:45	
Order number	:	Date Analysis Commenced	: 31-Mar-2016	
C-O-C number	:	Issue Date	: 01-Apr-2016 16:04	
Sampler	: ANTHONY BENNETT			NATA
Site	:			
Quote number	:		NATA Accredited Laboratory 825	
No. of samples received	: 1		Accredited for compliance with	WORLD RECOGNISED
No. of samples analysed	: 1		ISO/IEC 17025.	ACCREDITATION

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
RICHARD TEA	Lab technician	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page	: 3 of 4
Work Order	: ES1606876
Client	: GROUND TECHNOLOGIES
Project	gte795 Bankstown

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			B1				
	Cl	ient sampli	ng date / time	[08-Mar-2016]				
Compound	CAS Number	LOR	Unit	ES1606876-001				
				Result	Result	Result	Result	Result
EN33: TCLP Leach								
Initial pH		0.1	pH Unit	8.0				
After HCI pH		0.1	pH Unit	1.8				
Extraction Fluid Number		1	-	1				
Final pH		0.1	pH Unit	5.0				

Analytical Results

Sub-Matrix: TCLP LEACHATE (Matrix: WATER)	Client sample ID			B1				
Client sampling date / time				[08-Mar-2016]				
Compound	CAS Number	LOR	Unit	ES1606876-001				
				Result	Result	Result	Result	Result
EG005C: Leachable Metals by ICPAES								
Lead	7439-92-1	0.1	mg/L	<0.1				